Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

نویسندگان

  • Michael E Hildebrand
  • Janette Mezeyova
  • Paula L Smith
  • Michael W Salter
  • Elizabeth Tringham
  • Terrance P Snutch
چکیده

BACKGROUND Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. RESULTS Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. CONCLUSIONS Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antinociceptive action of oxytocin involves inhibition of potassium channel currents in lamina II neurons of the rat spinal cord

BACKGROUND Growing evidence in the literature shows that oxytocin (OT) has a strong spinal anti-nociceptive action. Oxytocinergic axons originating from a subpopulation of paraventricular hypothalamic neurons establish synaptic contacts with lamina II interneurons but little is known about the functional role of OT with respect to neuronal firing and excitability. RESULTS Using the patch-clam...

متن کامل

Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro.

Membrane and discharge properties determine the input-output relationship of neurones and are therefore of paramount importance for the functions of neural circuits. Here, we have tested the hypothesis that neurones in different laminae of the spinal dorsal horn differ in their electrophysiological properties. Whole-cell patch-clamp recordings from dorsal horn neurones in a rat transverse spina...

متن کامل

Possible sources and sites of action of the nitric oxide involved in synaptic plasticity at spinal lamina I projection neurons.

The synaptic long-term potentiation between primary afferent C-fibers and spinal lamina I projection neurons is a cellular model for hyperalgesia [Ikeda H, Heinke B, Ruscheweyh R, Sandkühler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237-1240]. In lamina I neurons with a projection to the periaqueductal gray, this long-term potenti...

متن کامل

Pacemaker neurons within newborn spinal pain circuits.

Spontaneous activity driven by "pacemaker" neurons, defined by their intrinsic ability to generate rhythmic burst firing, contributes to the development of sensory circuits in many regions of the immature CNS. However, it is unknown whether pacemaker-like neurons are present within central pain pathways in the neonate. Here, we provide evidence that a subpopulation of glutamatergic interneurons...

متن کامل

Dorsal-ventral gradient for neuronal plasticity in the embryonic spinal cord.

Within the developing Xenopus spinal cord, voltage-gated potassium (Kv) channel genes display different expression patterns, many of which occur in opposing dorsal-ventral gradients. Regional differences in Kv gene expression would predict different patterns of potassium current (I(Kv)) regulation. However, during the first 24 h of postmitotic differentiation, all primary spinal neurons undergo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011